Timber Frame Construction

Introduction

- What is timber?
- Failure modes
- History of timber frame construction
- Forms of timber frame construction

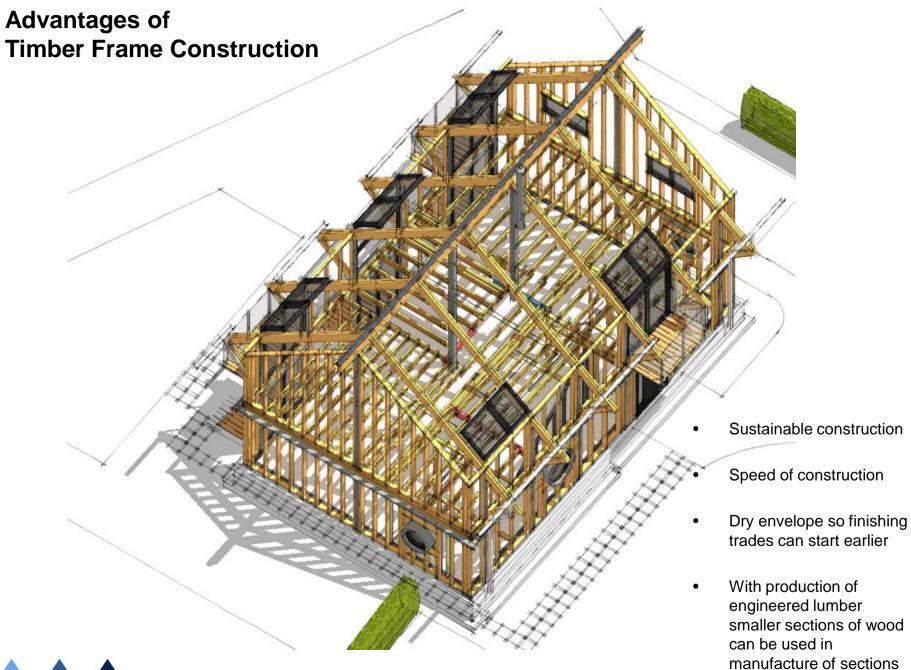
Design and Detailing

- Live and dead loads
- Wind loads
- Roof construction Diaphragm action
- Floor construction Diaphragm action
- Wall panel design
- Racking design Blockwork shielding, holding down, sliding
- Cladding Blockwork, timber, movement ties to studs
- Connections and wall ties High pressure at corners
- Nail schedules
- Non load bearing partitions
- Openings
- Check list

Construction Problems

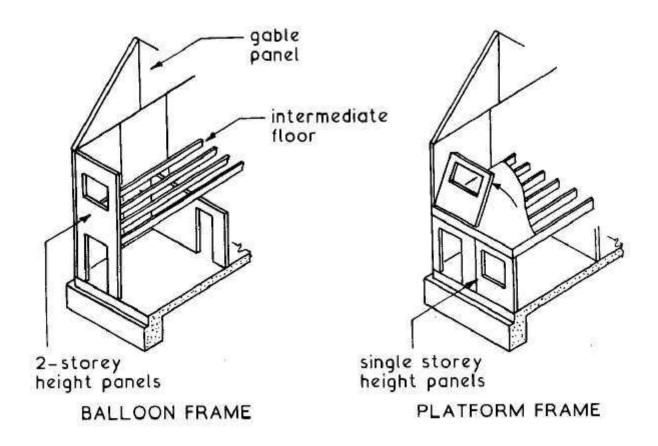
- Nailing and tie details
- Large window openings
- Storey height panels in large gables / at staircases

N PERS



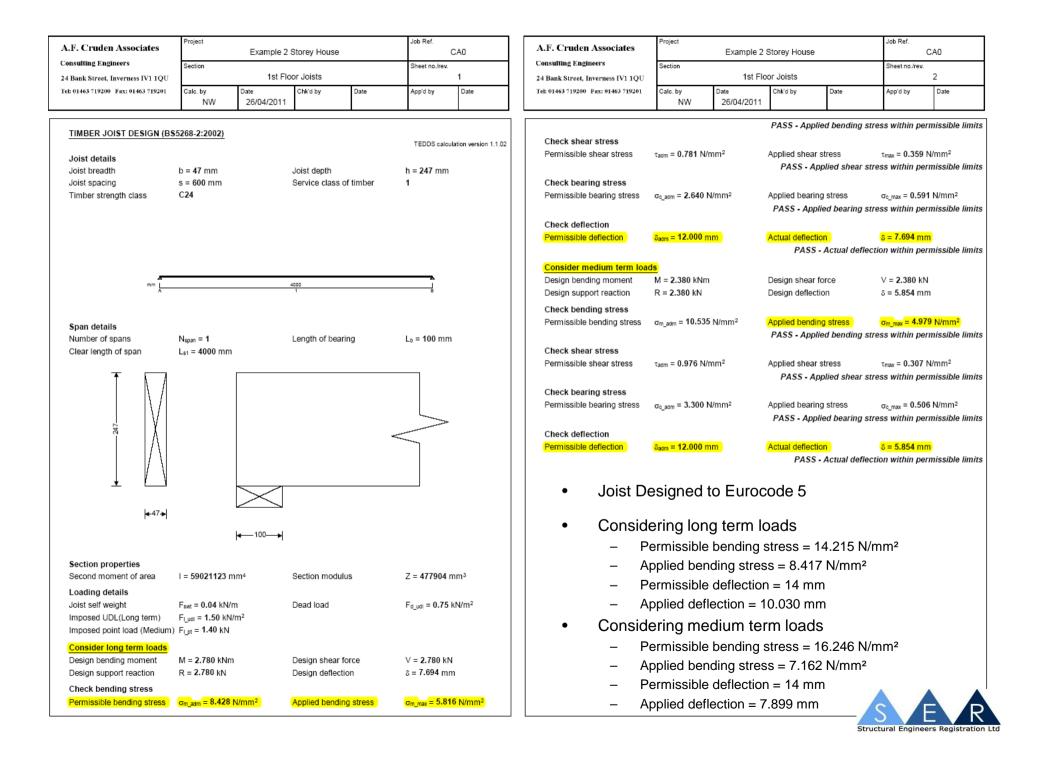
Stratherpeffer Spa Pavilion

Post War Swedish House Circa 1948



Timber Floor Cassette

Timber Frame Construction Methods



A.F. Cruden Associates	Project	Example 2	Storey House		Job Ref.	CA0	A.F. Cruden Associates	Project	Example 2	Storey House		Job Ref.	CA0
Consulting Engineers	Section	The ideal of	See dit see de		Sheet no./re		Consulting Engineers	Section	0			Sheet no./re	
24 Bank Street, Inverness IV1 1QU Tel: 01463 719200 Fax: 01463 719201	Calc. by	Date	Dead Loads Chk'd by	Date	App'd by	1 Date	24 Bank Street, Inverness IV1 1QU Tel: 01463 719200 Fax: 01463 719201	Calc. by	Date	V Load Chk'd by	Date	App'd by	1 Date
	NW	19/04/2011						NW	19/04/2011				
DEAD LOAD CONSTRUCTIO	N						SNOW LOADING TO BS6399	:PART 3:1988				TEDDS cal	culation version 1.0.01
Slate Roof							Site location						
Material		Thickness		γ		Weight	Location of site		Inverness				
Slate		(mm) 20		(kN/m³) 28		(kN/m²) 0.560	Site altitude		A = 75 m				
Softwood Sarking		20		5		0.100	Calculate site snow load						
Plasterboard		12.5		9		0.113	From B\$6399:Part 3: 1988 - F	Figure 1. Basio	c snow load on	the ground			
Glass wool		200		0.1		0.020	Basic snow load		s _b = 0.80 k	N/m²			
Totals		252.5				0.793				s _b + (0.09 kN/m			
1st Floor							Site snow load		$s_0 = s_b + s_a$	_{it} × (A - (100 m)) / 100 m = 0.7		6399:Part3:1988 Cl.6.2
Material		Thickness		γ		Weight						55	0000-1 and 1000 01.0.2
		(mm)		(kN/m³))	(kN/m²)		_					
Chipboard		22		8		0.176		\wedge		A			
Softwood Floor Joists		200		5		0.150		$\leq \alpha$		α			
Glass wool		200		0.1		0.020		•					
Plasterboard		12.5		9		0.113							
Totals		434.5				0.459			π^{μ_1}		μ	1	
								///////////////////////////////////////	<u> </u>				
							Uni	iform loadin	g	Asymmetri	c loading		
							Roof geometry						
							Roof type		Pitched				
							Distance on plan from gutter to	o ridge	b = 5.000 n	n			
							Angle of pitch of roof		α = 35.0 de	eg			
							Calculate uniform snow load	1					
							From BS6399:Part 3: 1988 - F	Figure 3. Snow	v load shape co	efficients for p	itched roofs		
							Snow load shape coefficient			(60 deg - α) / 3	0 deg] = 0.67		
							Uniform roof snow load		$s_{d1} = \mu_1 \times s$	₀ = <mark>0.51 kN/m²</mark>		_	
							Calculate asymmetric snow	load				В	S6399:Part3:1988 CI.5
							From B\$6399:Part 3: 1988 - F		v load shape co	efficients for p	itched roofs		
							Snow load shape coefficient		μ ₁ = 1.2 × [(60 deg - α) / 3	0 deg] = 1.00		
							Asymmetric roof snow load		$s_{d1} = \mu_1 \times s$	o = <mark>0.76 kN/m²</mark>			
												В	S6399:Part3:1988 CI.5
							Snow sliding down roof			6			
							Maximum uniform snow load o	on roof	s _{d_max} = 0.7		47 101/		
							Force from sliding snow load		⊢s = Sd_max :	× b × sin(α) = 2	.17 KN/M	R	S6399:Part3:1988 Cl.8
												D	22200.1 010.1000 01.0

A.F. Cruden Associates	Project	Example 2 S	Storey House		Job Ref.	CAO	A.F. Cruden		Project	Example 2	Storey Hou	se	Job Ref.	CA0
Consulting Engineers	Section	Wind I	oading		Sheet no./rev	<i>.</i>	Consulting Engir		Section	Wind	Loading		Sheet no	./rev. 2
4 Bank Street, Inverness IV1 1QU el: 01463 719200 Fax: 01463 719201	Calc. by	Date	Chk'd by	Date	App'd by	Date	24 Bank Street, In Tel: 01463 719200		Calc. by	Date	Chk'd by	Date	App'd by	
e. 01405 (19205 Fex. 01405 (19201	NW	19/04/2011	onkaby	Date	App only	Date	10. 01405 /15205	Fax: 01405 / 19201	NW	19/04/2011	Clike by	Date	Appuby	Date
WIND LOADING (B\$6399)							Effective win	d speed	V _e = 43.5 m/s		Dynamic p	ressure	q _s = 1.1	60 kN/m²
TIND LOADING (DS0500)					TEDDS cal	culation version 3.0.04		essure - roof						
							Reference he	-	H _e = 8301 mm		T	factor (Table		-
1							Fetch factor		S₀ = 1.075				22) St = 0.1	
				\sim	T		Fetch adjust		$T_c = 0.803$			e adjust factor		Tt = 1.544
							Gust peak fa		$g_t = 3.44$			d building fac		
000				/			Effective win	u speed	V _e = 43.5 m/s		Dynamic p	ressure	q₅ = 1.1	60 kN/m²
Ē					-830		Size effect f						_	
							Diag dim for	-	a _{eg} = 13.0 m			ffect factor	C _{aeg} = 0	
↓							Diag dim for		a _{es} = 20.6 m			ffect factor	$C_{aes} = 0$	
•	20000-		→ ↓	10000-	·		Diag dim for		a _{er} = 20.9 m		Exte size e		C _{aer} = 0.	
1.	Plan		- 1 - 1 -	Elevation	. 1		Volume for in		V ₁ = 0.1 m ³		Diag dim f	or int size effe	ect a _l = 5.0	m
							Internal size		C _{al} = 1.000					
Building data	Duraitat						Pressures a	nd forces						
Type of roof	Duopitch						Net pressure			$p = q_s \times c_p$	e×Cae-qs>	$< c_{pl} \times C_{al}$		
	L = 20000 mm		Width of buildi	ng	W = 10000	mm	Net force			$F_w = p \times A_v$	ef			
Pitch of roof	α ₀ = 35.0 deg						Roof loadca	se 1 - Wind 0, c	рі 0.20, -Сре					
Reference height	H _r = 8301 mm							Ext pressure	Dynamic			Net		
Dynamic classification							Zone	coefficient,	pressure, q	s External s factor, C	, P	ressure,	Area, A _{rer} (m ²)	Net ford F _w (kN
Building type factor (table 1)	K _b = 0.5	1	Dynamic augm	entation factor	r(1.6.1) C _r :	= 0.01		Cpe	(kN/m ²)	lactor, c	^{rae} p	(kN/m²)	, te (m.)	
Site wind speed							A (-ve)	-0.33	1.16	0.911		-0.58	33.65	-19.6
Location	Inverness	I	Basic wind spe	ed	V₀ = 24.1 n	n/s	B (-ve)	-0.33	1.16	0.911		-0.58	6.89	-4.02
Site altitude	∆s = 75 m	I	Upwind dist fro	om sea to site	d _{sea} = 2 km		C (-ve)	-0.13	1.16	0.911		-0.37	81.54	-30.40
Direction factor	S _d =1.00		Seasonal facto		S₅ = 1.00		E (-ve)	-0.73	1.16	0.911		-1.01	33.65	-33.8
Probability factor	S _p = 1.00	(Critical gap be	tween buidling:	s g = 5000 m	m	F (-ve)	-0.43	1.16	0.911		-0.69	6.89	-4.75
Topography not significant Altitude factor	S _a = 1.08		Site wind spee	d	V₅ = 25.9 m		G (-ve)	-0.43	1.16	0.911		-0.69	81.54	-
Terrain category	Town	,	Site wind spee	u	vs - 20.9 II	1/5	Total vertical		F _{w.v} = -122.00 F		Total horiz	ontal net forc		-56.24
Ave height of surround builds		1	Distance to ne	arest huilding	X _o = 35000	mm					TOtal HOH2	untal net lorc	e rw,n − z .	0.40 MN
Displ height (cl.1.7.3.3)	$H_d = 0 \text{ mm}$		Distance to ne	arcorrounding	7.0 - 55000		Walls loadc	ase 1 - Wind 0,						
The velocity pressure for th	e windward face	e of the building	g with a 0 deg	ree wind is to	be consider	ed as 1 part as	Zone	Ext pressure coefficient, Cpe	Dynamic pressure, q (kN/m ²)	External s factor, C	, P	Net ressure, (kN/m ²)	Area, A _{rer} (m²)	Net for F _w (kN
the height h is less than b (of the build			- h! •	and an discretion	A	-1.36	1.16	0.941		-1.72	19.80	-33.99
The velocity pressure for th the height h is less than b (or the building	y with a 90 de	gree wind is t	o de considê	red as 1 part as	В	-0.82	1.16	0.941		-1.13	45.71	-51.51
Dynamic pressure - windwa		dea						0.76	0.95	0.941		0.47	96.00	
Reference height	$H_e = 4800 \text{ mm}$	ucg					w		_					44.97
Fetch factor (Table 22)	Sc = 0.972		Turbulence fac	tor (Table 22)	St = 0.194		I	-0.50	0.95	0.912		-0.62	96.00	-59.85
Fetch adjust factor (T.23)	$T_c = 0.745$			ust factor (T.2		1.650	Overall load	-						
Gust peak factor	gt = 3.44		Terrain and bu		S₀ = 1.52		Leeward force		F _I = -59.9 kN		Windward	force overall	F _w = 45.	0 kN
Effective wind speed	Ve = 39.4 m/s	(Dynamic press	ure	q₅ = 0.950	kN/m²	Overall loadi	ng overall	F _{w.w} = 113.1 kN	1				
Dynamic pressure - windwa	rd wall - Wind 9	0 deg												
Reference height	H _e = 8301 mm													
Fetch factor (Table 22)	Sc = 1.075		Turbulence fac	tor (Table 22)	St = 0.178									
Fetch adjust factor (T.23)	$T_c = 0.803$		Turbulence adj	ust factor (T.2	3) T _t =	1.544								
Gust peak factor	gt = 3.44		Terrain and bu	ilding factor	S _b = 1.68									
							-			-			-	

Solid Timber Floor Joists

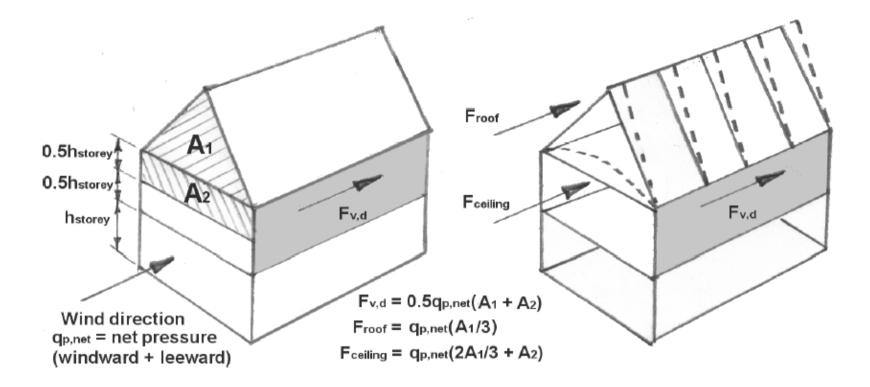
Timber Frame Construction with JJI Joist and Temporary Bracing

Posi-Joists

Solid Timber Deck - EURBAN System

Timber Frame Construction showing Wall Studs

- 100/150/200 x 50 studs at 600c/c
- Support vertical loads
- Withstand wind load on wall face


A.F. Cruden Associates	Project Ex	xample 2 Storey House	Job Ref.	CAO	A.F. Cruden Associates	Project	Example 2	Storey House		Job Ref.	CAO
Consulting Engineers 24 Bank Street, Inverness IV1 1QU	Section 2.	.4m External Stud Wall	Sheet no./rev.	1	Consulting Engineers 24 Bank Street, Inverness IV1 1QU	Section	2.4m Exte	rnal Stud Wall		Sheet no./re	v. 2
Tel: 01463 719200 Fax: 01463 719201	Calc. by Date NW 19/	Chk'd by Date /04/2011	App'd by	Date	Tel: 01463 719200 Fax: 01463 719201	Calc. by NW	Date 19/04/2011	Chk'd by	Date	App'd by	Date
TIMBER STUD DESIGN (BS	5268-2:2002 <u>)</u>		TEDDS calcul	lation version 1.0.03	Check bending stress Permissible bending stress	σ _{m_adm} = <mark>11.035</mark>		Applied bending		-	049 N/mm²
					Check compressive stress		a benaing sire	ss under very sl	ion term id	bads is within p	ermissible i
	L. UI	kN/m			Permissible comp.stress	σ _{c_adm} = 9.144 №		Applied comp.s		$\sigma_{c_{max}} = 2.0$	
	. b. W. Ц	1.				SS - Applied con	npressive stre	ss under very si	iori term id	oads is within p	ermissible
	T¥ . WW				Check compressive stress Permissible comp.stress	son rall σ _{cp1 adm} = 4.770	N/mm2	Applied comp.s	tross	σ 2	.045 N/mm ²
						SS - Applied con					
		· · · · · · · · · · · · · · · · · · ·			Check combined axial con						
					Combined axial compression PASS - Combined com	n and bending val	ue	K = 0.819 < 1 s under very sho		ids are within p	ermissible
	×y	NIM ²			Check stud deflection Permissible deflection	8 _{adm} = 6.900 mr	m	Actual deflectio	n	Smax = 4.78	2 mm
	b∦ ₩	X K						eflection due to	wind loadi		
					Check compressive stress	on stud					
	0				Permissible comp.stress	σ _{c_adm} = 6.897 №	N/mm ²	Applied comp.s	tress	σc_max = 2.0	45 N/mm ²
	0					PASS - Applied c	ompressive st	ress under med	ium term lo	oads is within p	ermissible
		Ss The A			Check compressive stress	on rail					
		~ 11			Permissible comp.stress	σ _{cp1_adm} = 3.407		Applied comp.s			.045 N/mm ²
Stud details						PASS - Applied c	compressive st	ress under med	ium term io	oads is within p	ermissible
Stud breadth	b = 47 mm	Stud depth	h = 147 mm		Check compressive stress		1/2	Applied some a		4 6	67 M/m m 2
Number of studs	N₅ = 1	Stud grade	C16		Permissible comp.stress	$\sigma_{c_{adm}} = 5.650 N$		Applied comp.s e stress under lo		σc_max = 1.5 nade is within n	
Section properties	4 00002	Or affirm and data	7 400070 -		Check compressive stress		eu compressiv	e suess under h	ong term t	oaus is within p	ernnssible i
Cross sectional area Moment of inertia major axis	A = 6909 mm ²	Section modulus Moment of inertia minor axis	Z = 169270 n		Permissible comp.stress	σ _{cp1 adm} = 2.726	N/mm²	Applied comp.s	tress	Gent may = 1	.557 N/mm²
Radius of gyration major axis		Radius of gyration minor axis	,		r anniousio comp.o.coo			e stress under l			
Panel details - Studs restra			.,							· · · · · · · · · · · · · · · · · · ·	
Panel height	L = 2400 mm	Stud length	L₅ = 2306 mn	n							
Standard stud spacing	s₅ = 600 mm	Panel opening	O = 1200 mn	n							
Loaded panel length	s = 900 mm	Effective length major axis	L _{ex} = 1960 m	m	 Stud L 	Designed	to Euro	code 5			
		Slenderness ratio	λ = 46.19								
					_	Permissible	o bondina	a stross – (0 515 N	l/mm2	
Vertical loading details Wall UDL	Dead loads	Imposed loads									
Roof UDL	U _{w_d} = 1.20 kN/m U _{r d} = 6.25 kN/m	U _{r I} = 3.75 kN/m			-	Applied be	nding stre	ess = 6.06	1 N/mn	n ²	
Floor UDL	U _{f_d} = 1.50 kN/m	U _{f_l} = 3.00 kN/m				Interaction	factor = 0	0.836			
Imposed floor load duration	Long term	-			_	Permissible	e deflecti	n = 9.6 m	m		
Lateral loading											
Wind loading	W = 1.58 kN/m ²	Wind load duration	Very short te	erm	-	Applied de	TIECTION =	5.24/ mm	ו		
Modification factors											
Section depth factor	K ₇ = 1.08	Load sharing factor	K ₈ = 1.10								
A											

Structural Engineers Registration Ltd

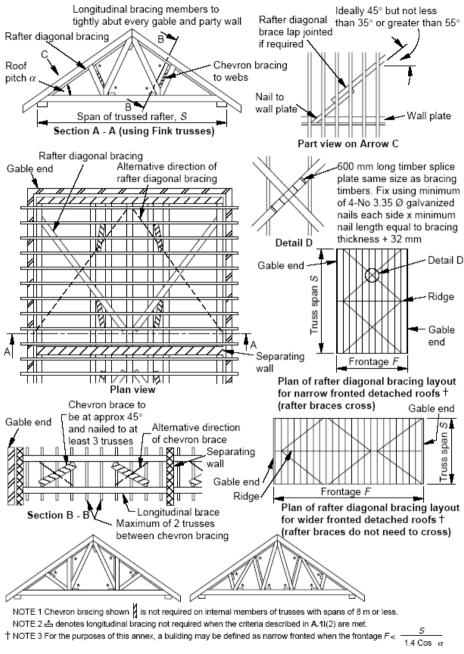
Solid Engineering Lumber Wall - EURBAN System

(a) Area of gable wall transferring wind load to front racking wall

(b) Diaphragm action of roof trusses and ceiling transferring wind on gable wall to front and rear walls

(c) First floor acts as diaphragm transferring wind on gable to ground floor front and rear walls

Racking Load on First Floor Wall from Wind on Gable Wall



BS5268-6.1: 1996 Clause 4.5 Horizontal diaphragms

The design method for timber frame walls given in this British Standard assumes that, for the range of dwellings covered, the normal construction of floors and roofs provides adequate diaphragm action, provided that, in the case of intermediate floors, a floor deck or sub-deck is fixed directly to the top faces of the joists, or the floor is braced by some other means. In the case of pitched roofs it is assumed that the plasterboard ceiling under the roof, together with the roof bracing recommended in BS 5268-3 is sufficient to transfer applied wind forces to the resisting walls.

Due account should be taken of the eccentricity of the loading in relation to the wall panels providing resistance.

- Not enough nails in bracing to act as diaphragm
- Plasterboard and trusses act together
- Easier in Scotland as most roofs sarked with ply/OSB/20mm timber boarding
- Eurocode 5 Clause 9.2.3.2 is more onerous and requires calculations to be undertaken

BS5268-3 1998 Standard bracing for rafter and web members of duopitch trussed rafters

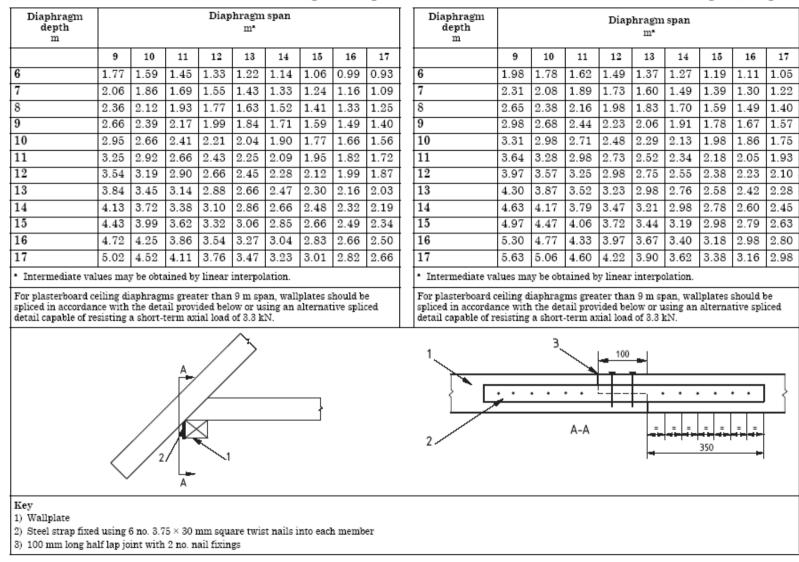
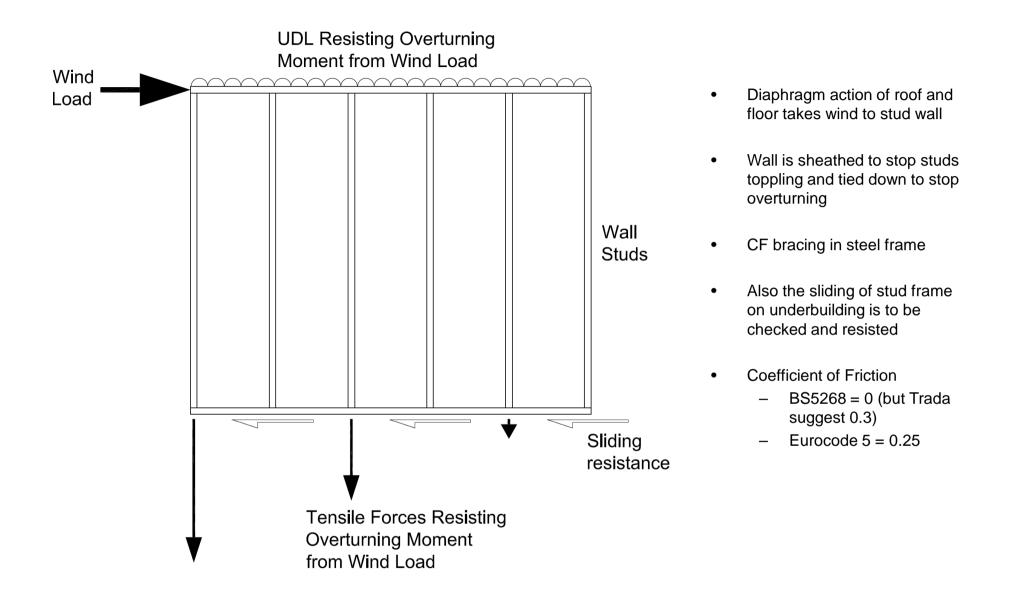


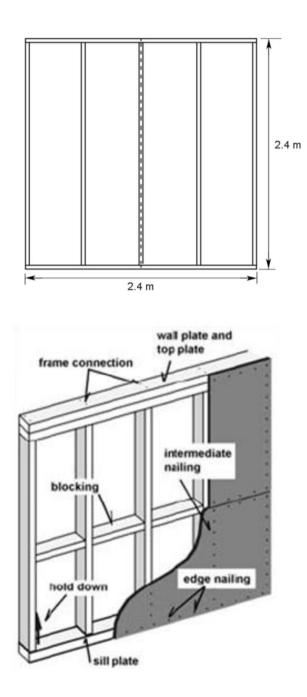
Table A.4 — Permissible horizontal wind force (kN/m) at bottom chord level on 12.5 mm thick plasterboard ceiling diaphragms

Table A.5 — Permissible horizontal wind force (kN/m) at bottom chord level on 15 mm thick plasterboard ceiling diaphragms

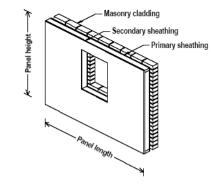

BS5268-3: 2006 Tables A.4 and A.5

- Opening at stairwell has effect on diaphragm internal ground floor wall may need to be sheathed to act as racking wall
- Flooring not laid but upper floor wall plate fixed

Typical Racking Panel


A.F. Cruden Associates	Project	Example 2	Storey House			CAO	A.F. Cruden Associates Consulting Engineers
24 Bank Street, Inverness IV1 1QU	Section	Racking	Calculation		Sheet no./rev.	1	24 Bank Street, Inverness IV1 1QU
Tel: 01463 719200 Fax: 01463 719201	Calc. by NW	Date 19/04/2011	Chk'd by	Date	App'd by	Date	Tel: 01463 719200 Fax: 01463 719201
RACKING LOADS DESIGN - Considering wind loads to the General details Building type Overall height of building Number of storeys Depth of building Breadth of building Roof type Roof pitch Windloading details Dynamic augmentation factor Dynamic pressure eaves level Dynamic pressure roof level Wall details Crownet floor why cleanation	the front elevation Dwelling H = 8.300 m 2 D = 10.000 m B = 20.000 m Duopitch α = 35.0 deg Cr = 0.010 qer = 1.160 kN/m Area on elevati	n 1 ² on	q _{se} = 1.160 kN/r Pressure coeff		Size effect f	lation version 1.0.08	Area of w/w elevation Loads applied to w/w elevation 39.522 kN Area of I/w elevation Loads applied to I/w elevation Loads applied to roof Zone A Loads applied to roof Zone C Loads applied to roof Zone C Loads applied to roof Zone C Cads applied to roof Zone C Cads applied to roof Zone C Cads applied to roof Zone C Calculate racking load at fi Comb w/w loading coefficient Area of w/w elevation Loads applied to wiw elevation
Ground floor w/w elevation Ground floor I/w elevation First floor w/w elevation	Area _{w0} = 48.000 Area ₁₀ = 48.000 Area _{w1} = 48.000	m² m²	C _{pew} = 0.832 C _{pel} = -0.500 C _{pew} = 0.832		$C_{aND} = 1.000$ $C_{al0} = 1.000$ $C_{aN1} = 1.000$		kN Area of I/w elevation
First floor I/w elevation Roof details Roof zone A Roof zone B Roof zone C Roof zone E Roof zone F Roof zone G	Area ₁₁ = 48.000 Area on plan Plan _A = 27.556 r Plan _B = 5.644 m Plan _C = 66.800 r Plan _E = 27.556 r Plan _F = 5.644 m Plan _G = 66.800 r	n ² 2 n ² 2	Cpel = -0.500 Pressure coeff CpeA = 0.800 CpeB = 0.533 CpeC = 0.500 CpeE = -0.733 CpeF = -0.433 CpeG = -0.433	icient	C _{a1} = 1.000		Loads applied to I/w elevation Racking load at first floor
Shielding effect of masonry Masonry wall with buttresses Total area of elevation Total area of openings Percentage of openings From BS 5268:Section 6.1:1 Windward modification factor Shielding effect of masonry Masonry wall with buttresses Total area of elevation Total area of openings Percentage of openings From BS 5268:Section 6.1:1 Leeward modification factor Calculate racking load at g Comb w/w loading coefficient Comb I/w loading coefficient	r cladding on wir or returns at one Area _w = 96.000 / Open _w = 15.000 p_w = Open _w / Are 1996 - Table 1 K _{100w} = 0.663 r cladding on lee or returns at one Area ₁ = 96.000 m Open ₁ = 15.000 m p_i = Open ₁ / Area 1996 - Table 1 K ₁₀₀ = 0.663 round floor level C _w = C _{3x0} × (1 +	ndward elevati end only m ² asa _w = 15.6 % ward elevation end only n ² n ² a _i = 15.6 % C _r) = 1.010	on				

	Project				Job Ref.			
A.F. Cruden Associates		Example 2 \$	Storey House			CA0		
onsulting Engineers	Section				Sheet no./rev.			
4 Bank Street, Inverness IV1 1QU		Racking (Calculation			2		
el: 01463 719200 Fax: 01463 719201	Calc. by	Date	Chk'd by	Date	App'd by	Date		
	NW	19/04/2011						
			70.000					
Area of w/w elevation	TotalArea _{w0:1} = A							
Loads applied to w/w elevatio	n		$P_{w0} = 0.85 \times K_{10}$	‱ × IotalArea₀	v0:1 × qse × Cp	$_{BW} \times C_W =$		
39.522 kN								
Area of I/w elevation	TotalArea _{I0:1} = A	-						
Loads applied to I/w elevation			P					
Loads applied to roof Zone A			-					
Loads applied to roof Zone B								
Loads applied to roof Zone C	Prc = 0.85 × Pla	$n_{C} \times tan(\alpha) \times q_{sr}$	$\times C_{peC} \times C_w = 2$	3.290 kN				
Loads applied to roof Zone E	Pr∈ = 0.85 × Pla	$n_E \times tan(\alpha) \times q_{sr}$	$\times C_{peE} \times C_i = -1$	4.085 kN				
Loads applied to roof Zone F	PrF = 0.85 × Plan	$n_F \times tan(\alpha) \times q_{sr}$	$\times C_{peF} \times C_{I} = -1$.704 kN				
Loads applied to roof Zone G	P _{rg} = 0.85 × Pla	n _G × tan(α) × q _s	× C _{peG} × C _I = -2	20.169 kN				
Racking load at ground floor	$P_0 = P_{w0} - P_{10} + F_{10}$	P _{rA} + P _{rB} + P _{rC} -	Pre - PrF - Prg =	139.991 kN				
Calculate racking load at fir	st floor level							
Comb w/w loading coefficient	$C_w = C_{aw1} \times (1 +$	Cr) = 1.010						
Comb I/w loading coefficient	$C_{I} = C_{aw1} \times (1 +$	Cr) = 1.010						
Area of w/w elevation	Area of w/w elevation TotalAreaw1 / 2 = 24.000 m ²							
Loads applied to w/w elevation	n		$P_{w1} = 0.85 \times K_{10}$	‱ × TotalArea₀	$v_1 \times q_{se} \times C_{pev}$	$_{v} \times C_{w} = 13.174$		
kN								
Area of I/w elevation	TotalArea _{I1} = Are	ea ₁₁ / 2 = 24.00 0	m²					
Loads applied to I/w elevation	$P_{11} = 0.85 \times K_{100}$	× TotalArea _{l1} ×	$q_{\text{se}} \times C_{\text{pel}} \times C_{\text{I}}$	= -7.917 kN				
Racking load at first floor	P1 = Pw1 - P11 + F	P _{rA} + P _{rB} + P _{rC} -	Pre - PrF - Prg =	97.809 kN				


Project

Job Ref.

Standard timber frame wall panel

TIMBER PANEL	RACKING	RESISTANCE -	B\$5268:SECTION	6.1:1996

TIMBER FAREE RACKING	123131ANCE - D35200.3ECT	01 0.1.1330	TEDDS calculation version 1.0.04
Dwellings not exceeding se	even storeys		12000 calculation version 1.0.0
Panel 1			
Wall panel details			
Length of panel	L = 3.600 m	Height of panel	H _{wp} = 2.400 m
Area of openings	A _a = 2.400 m ²	Timber studs	>= 38 x 72
UDL on timber frame	F = 4.000 kN/m		
Primary sheathing details			
Primary board type	Plywood	Board thickness	T _p = 9.50 mm
Nail diameter	D _p = 3.00 mm	Perimeter nail spacing	S _p = 150 mm
Basic racking resistance	R _{bp} = 1.680 kN/m		
Secondary sheathing detail	s		
Secondary board type	Plasterboard	Board thickness	T _s = 12.5 0 mm
Nail diameter	D₅ = 2.65 mm	Perimeter nail spacing	S₅ = 150 mm
Basic racking resistance	R _{bs} = 0.180 kN/m		
Masonry cladding details			
Length of cladding	L _{mas} = 2.400 m	Density of wall ties	3.7 ties / m ²
Basic racking resistance	R _{bmas} = 0.400 kN/m		
Racking resistance of wall	panel and masonry cladding		
Racking resistance of panel	Rwp = 4.546 kN	Racking resistance of cladding	Rmas = 0.960 kN
Total Racking resistance	R _R = 5.506 kN	Racking resistance of p/board	R _{PO} = 0.440 kN

BASIC RESISTANCES kN/m BS 5268 - 6.1 1996 Ply P'board Masonry 1.**6**8 0.28 0.4 Factors Ply data **K**101= 1.000 1.000 N/A Nail diameter = 3 mm **K**102= 1.000 1.000 N/A Nail spacing = 150 mm 1.000 Ply thickness = **K**103= 1.000 N/A 9.5 mm **K**104= 1.000 1.000 N/A Wall height = 2.4 m 1.176 1.176 N/A Wall length = 3.6 m **K**105= **K**106= 0.408 0.408 N/A Opening area = 2.4 m² **K**107= 1.286 1.286 N/A .oad above wall = 4 kN/m 1.100 Share factor = 110% **K**108= 1.100 N/A 0.190 0.400 Total per m= 1.731 kN/m r/m = 1.141 Length= 3.6 3.6 2.4 m Sum Total= 5.750 kN Totals 4.106 0.684 0.960

Primary board material	Fixing	Racking resistance	secondary bo	ontribution of ard on timber e wall
			Category 2 or 3 materials	Category 1 material
		kN/m	kN/m	kN/m
Category 1 materials:	3.00 mm diameter wire nails	1.68	0.28	0.84
— 9.5 mm plywood;	at least 50 mm long, maximum spacing 150 mm on			
— 9.0 mm medium board;	perimeter, 300 mm internal			
— 12.0 mm chipboard (type C3M, C4M or C5);				
— 6.0 mm tempered hardboard;				
— 9.0 mm 0SB (type F2)				
Category 2 materials:	3.00 mm diameter wire nails	0.90	0.45	1.06
— 12.5 mm bitumen impregnated insulation board;	at least 50 mm long, maximum spacing 75 mm on perimeter, 150 mm internal			
— separating wall of minimum 30 mm plasterboard (in two or more layers)	Each layer should be individually fixed with 2.65 mm diameter plasterboard nails at 150 mm spacing, nails for the outmost layer should be at least 60 mm long	0.90	0.45	1.06
Category 3 materials: — 12.5 mm plasterboard	2.65 mm diameter plasterboard nails at least 40 mm long, maximum spacing 150 mm	0.90	0.45	1.06

NOTE 1 Timber members in wall panels should be not less than $38 \text{ mm} \times 72 \text{ mm}$ rectangular section with linings fixed to the narrower face, with ends cut square and assembled in accordance with the relevant clauses of section 6.

NOTE 2 Timber members of rectangular section less than $38 \text{ mm} \times 72 \text{ mm}$, but not less than $38 \text{ mm} \times 63 \text{ mm}$, should be taken into account for internal walls (excluding separating walls), but in such cases all values for basic racking resistance given in this table should be reduced by 15 %.

NOTE 3 Studs should be spaced at centres not exceeding 610 mm.

NOTE 4 Board edges should be backed by, and nailed to timber framing at all edges except in the case of the underlayers in separating wall construction where it is normal to fix boards horizontally, in which case the intermediate horizontal joint may be unsupported.

NOTE 5 Studs should be of species and stress grade satisfying strength class C16 or better (as defined in BS 5268-2).

NOTE 6 The additional contribution from a secondary layer of category 1, 2 or 3 materials should only be included once in the determination of basic racking resistance, no matter how many additional layers may be fixed to the wall panel.

NOTE 7 The values given in Table 2 together with the modification factors in 4.8 and 4.9 assume that the wall under consideration is adequately fixed to ensure resistance to sliding and overturning.

NOTE 8 Where a secondary board is fixed on the same side of a wall as the primary sheathing then the nail lengths given in the table should be increased to take account of the additional thickness.

BS5268-6.1:1996 Table 2 Basic Racking Resistances for a Range of Materials and Combinations of Materials

Wall type	Party	Walls	Interio	r Walls				Exterior Walls	;		
waitype	A:Party	B:Party	C:Int	D:Int	E:Ext	F:Ext	G:Ext	H:Ext	I:Ext	J:Ext	K:Ext
Primary board ^b	GYP + GYP	GYP + GYP	GYP	GYP	OSB	OSB	OSB	OSB	OSB+ GYP	OSB	PLY
Service class	2	2	1	1	2	2	2	2	1	2	2
tı (mm)	19+12.5	15+15	12.5	12.5	9	9	9	9	9 +12.5	11	9.5
Fastener type ^c	S	S	S	S	N	N	N	N	N + S	N	N
<i>d</i> i (mm)	3.9+3.9	3.5+3.5	3.9	3.5	2.8	3.1	3.1	3.1	3.1+3.9	3.1	3.1
h (mm)	55+55	60+60	55	45	50	50	50	50	50 + 55	75	75
si m ^d	0.15+0.15	0.15+0.15	0.15	0.15	0.15	0.1	0.075	0.05	0.1+0.1	0.05	0.05
$F_{f,Rd,1}$ (kN)	0.488 ^e	0.476 ^e	0.417	0.399	0.495	0.51	0.51	0.51	0.595 ^e	0.564	0.61
ks,1′ (m-1)	7.48	7.90	5.05	5.23	5.60	7.09	8.37	10.20	10.20	10.20	10.20
F _{f,Rd,1} k _{s,1} ′ (kN/m)	3.65	3.76	2.10	2.09	2.77	3.62	4.27	5.20	6.07	5.76	6.22
Secondary board ^b	n/a	n/a	GYP	GYP	GYP	GYP	GYP	GYP	OSB	GYP	GYP
Service class	-	-	1	1	1	1	1	1	2	1	1
t2 (mm)	-	-	12.5	12.5	12.5	12.5	12.5	12.5	9	12.5	12.5
Fastener type ^c	-	-	S	S	S	S	S	S	N	S	S
dz (mm)	-	-	3.9	3.5	3.5	3.9	3.9	3.9	3.1	3.5	3.5
<i>I</i> ₂ (mm)	-	-	55	45	45	55	55	55	50	45	45
s₂ (m) ^d	-	-	0.15	0.15	0.15	0.15	0.15	0.15	0.05	0.15	0.15
Ff,Rd,2 (KN)	-	-	0.417	0.399	0.399	0.417	0.417	0.417	0.51	0.399	0.399
ks,2′ (m ⁻¹)	-	-	5.05	5.23	5.23	5.05	5.05	5.05	10.20	5.23	5.23
Ff.Rd.2 ks.2′ (kN/m)	-	-	2.10	2.09	2.09	2.10	2.10	2.10	5.20	2.09	2.09
F _{i,Rd} (kN/m)	3.65	3.76	3.16	3.13	3.81	4.67	5.32	6.26	8.67	6.80	7.27

Kev

- A Party wall, one layer of 19mm gypsum wallboard with a layer of 12.5mm plasterboard on top, each fixed with 55mm long plasterboard screws. The perimeter spacings on both boards are 150mm with the screws in the outer board positioned between the screws in the inner board. The outer board contributes to the racking resistance only by helping the inner wallboards to act as a continuous diaphragm, but the screws in it are treated like additional (55 - 12.5) = 42.5mm screws through the inner board, 0.488kN is the mean of the resistance of the two sets of screws, and the resultant spacing of 75mm is used to calculate $k_{s,1'}$.
- B Party wall, like A, but with two layers of 15mm plasterboard each fixed with 60mm long screws. The outer board itself does not contribute to the racking resistance, but the screws in it are treated like additional (60 - 15) = 45mm screws through the inner board. 0.476kN is the mean of the resistance of the two sets of screws.
- C Interior wall with one 12,5mm layer of plasterboard on each side, 3,9mm plasterboard screws.
- D Interior wall, like C, but with 3.5mm plasterboard screws.
- E Exterior wall, low strength.
- F Exterior wall, standard strength.
- G Exterior wall, extra strength.
- H Exterior wall, high strength.
- Exterior wall, very high strength. This wall type has a layer of OSB on the exterior and interior face, with an additional layer of 12.5mm plasterboard on the interior face. On the interior face it is in service class 1 so the connections are stronger, hence the interior OSB is the 'primary' sheathing. The perimeter spacings are 50mm $f = F_{LRd} = F_{tRd1} k_{s,1}' + 0.5 F_{tRd2} k_{s,2}'$ where $F_{tRd1} k_{s,1} \ge F_{tRd2} k_{s,2}'$.

on the exterior OSB board and 100mm on each of the two interior boards, with the plasterboard screws positioned between the OSB nails. The plasterboard itself does not contribute to the racking resistance, but the screws in it are treated like additional (55 - 12.5) = 42.5mm screws through the OSB. 0.595kN is the mean of the resistance of the nails and the screws in the OSB, and the resultant spacing of 50mm is used to calculate ks,1'. With spacing on the interior boards closer than 100mm it is difficult to ensure that the plasterboard screws are not inserted too close to the OSB nails unless the process is computer controlled.

- Exterior wall, high strength with 11mm OSB.
- K Exterior wall, high strength with 9.5mm plywood.

Notes

- a See Section 10.8.1.4 iii) for definitions of the symbols. The tabulated values of $F_{i,\text{RM}}$ may be used in Section 10.8.1.4 iii) expression 3) to obtain the shear resistance of a wall.
- b OSB = OSB Type 3 or 4 to BS EN 300²⁰, characteristic density 550kg/m³ PLY = softwood plywood, exterior grade, characteristic density 505kg/m³ (any plywood listed in Table 3.28).
 - GYP = Type A gypsum plasterboard or better, characteristic density 640kg/m³.
- N = smooth machine driven nail, ultimate tensile strength 700N/mm². S = plasterboard screw, ultimate tensile strength 540N/mm².
- d Spacing around board perimeter. On intermediate studs fastener spacing should be 2s.
- e Mean value of $F_{t,Rd}$ for the fasteners for the two boards in the inner board only (see A, B and I).

BS EN1995:2004 Basic Racking Resistances of Some Common C16 Grade Timber Frame Wall Configurations

Extracted from Manual for the design of timber building structures to Eurocode 5 by IStructE and Trada

Number of	Percentage	1	K100	K_{100}									
storeys	of loaded wall occupied by openings ^a	[]											
		For masonry walls with buttresses or returns not less than 550 mm and not greater than 9 m centre to centre ^b	For masonry walls with buttresses or returns at one end of wall not less than 550 mm, other end without buttresses or returns or with buttresses or returns less than 550 mm, wall length no greater than 4.5 m ^c	For masonry walls without buttresses or returns or with buttresses or returns of less than 550 mm ^d									
1 and 2	0	0.45	0.60	0.75									
	10	0.50	0.64	0.78									
	20	0.56	0.68	0.80									
	30	0.61	0.72	0.83									
	40	0.66	0.76	0.85									
	50	0.71	0.80	0.88									
	60	0.77	0.84	0.90									
	70	0.82	0.88	0.93									
	>70	1.00	1.00	1.00									
3	0	0.50	0.68	0.85									
	10	0.55	0.71	0.87									
	20	0.60	0.74	0.88									
	30	0.65	0.78	0.90									
	40	0.70	0.81	0.92									
	50	0.75	0.84	0.93									
	60	0.80	0.87	0.94									
	70	0.85	0.91	0.96									
	>70	1.00	1.00	1.00									
		For masonry walls with buttresses or returns not less than 950 mm and not greater than 9 m centre to centre ^b	For masonry walls with buttresses or returns at one end of wall not less than 950 mm, other end without buttresses or returns less than 950 mm, wall length no	For masonry walls without buttresses or returns or with buttresses or returns of less than 950 mm ^d									
4	0	0.60	greater than 4.5 m ^c	0.00									
4	0	0.60	0.74	0.88									
	10	0.64	0.77	0.89									
	20	0.69	0.80	0.91									
	30	0.73	0.83	0.93									
	40	0.77	0.86	0.95									
	50	0.81	0.89	0.96									
	60	0.86	0.92	0.98									
	70	0.90	0.95	1.00									
NOTE 1 Val	>70	1.00 ate percentages of wall occupied k	1.00	1.00									

Brick / blockwork skin enhances timber frame in 2 ways:-

 Shields stud in wall from wind as noted in BS5268-6.1 Table 1

Adds to racking resistance of panel

٠

NOTE 1 Values for intermediate percentages of wall occupied by openings may be obtained by linear interpolation. NOTE 2 The K_{100} factors and support conditions (where relevant) should be selected on the basis of the maximum height of the wall under consideration and be applied to the whole wall.

NOTE 3 For walls longer than 9 m, the values of K_{100} given in column 3 may be used provided additional buttresses or returns are added to the masonry wall at a maximum centre to centre spacing of 9 m.

^a In calculating the percentage of wall occupied by openings, the height of the wall should be taken as the height to the eaves. ^b Values of K_{100} to be used where a masonry wall is supported at both ends by adequate masonry buttresses or returns.

^c Values of K_{100} to be used where a wall, which otherwise has adequate buttresses or returns, incorporates a vertical movement joint (i.e. the wall has the required buttress or return at one end, but is not adequately supported at the other). ^d Values of K_{100} to be used where a wall has no masonry returns or buttresses or has inadequate supports at its ends.

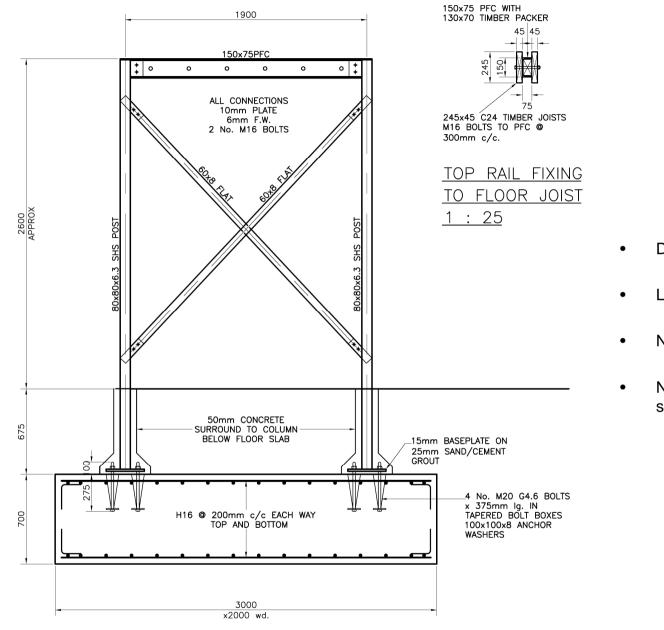
BS5268-6.1:1996 Shielding Factors

Table 10.1 V	alues of	kmasonry							
Percentage			Number	of store	ys shield	ded by i	nasonry	/	
of shielded wall		1 and 2		3				4	
occupied by openings	A	В	С	А	В	С	D	E	F
-13-	1 1	I		1 1	I		1 1	I	
0	0.45	0.60	0.75	0.50	0.68	0.85	0.60	0.74	0.88
10	0.50	0.64	0.78	0.55	0.71	0.87	0.64	0.77	0.89
20	0.56	0.68	0.80	0.60	0.74	0.88	0.69	0.80	0.91
30	0.61	0.72	0.83	0.65	0.78	0.90	0.73	0.83	0.93
40	0.66	0.76	0.85	0.70	0.81	0.92	0.77	0.86	0.95
50	0.71	0.80	0.88	0.75	0.84	0.93	0.81	0.89	0.96
60	0.77	0.84	0.90	0.80	0.87	0.94	0.86	0.92	0.98
70	0.82	0.88	0.93	0.85	0.91	0.96	0.90	0.95	1.00
>70	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Notes

A For masonry walls with buttresses or returns of length \ge 550mm and spaced at not more than 9m centres.

B For masonry walls with buttresses or returns of length \ge 550mm at one end only, wall length \le 4.5m.

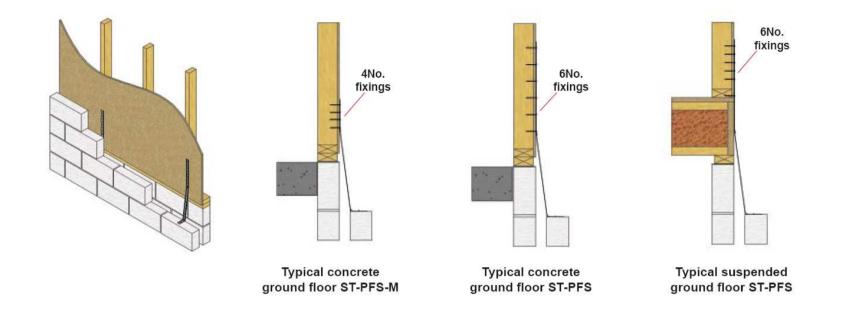

C For masonry walls other than A and B.

- D For masonry walls with buttresses or returns of length \ge 950mm and spaced at not more than 9m centres.
- E For masonry walls with buttresses or returns of length \ge 950mm at one end only, wall length \leqslant 4.5m.
- F For masonry walls other than D or E.
- a In calculating the percentage of wall occupied by openings, the height of the wall should be taken as the height to the eaves, the top of the fourth storey of masonry or 10m, whichever is less.
- b Values for intermediate percentages of wall occupied by openings may be obtained by linear interpolation.
- c For walls longer than 9m the tabulated values may be used provided that additional buttresses or returns are added to the masonry wall spaced at not more than 9m centres.
- d If the selected support conditions do not extend to the full shielded height of the wall in question then the number of storeys and percentage of loaded wall should be based on the height to which the selected support conditions reach.

BS EN1995:2004 Shielding Factors

Extracted from Manual for the design of timber building structures to Eurocode 5 by IStructE and Trada

- Demand for more light
- Larger areas of glazing
- Not enough wall panels
- Need for alternative solutions:
 - steel braced panel



Structural Engineers Registration Ltd

Timber Frame Construction with Steel Braced Racking Panel

ST-PFS/ST-PFS-M Performance

Product Code		D	imension	IS		Safe Working Load (kN)	Characteristic Capacity
Flouder Code	X1	X2	Y	Y1	Y2	Short Term	of Strap (kN)
ST-PFS-50	50	75	721	346	375	3.45	6.9
ST-PFS-75	75	75	716	346	370	3.45	6.9
ST-PFS-100	100	75	711	346	365	3.45	6.9

ST-PFS-50-M	50	75	521	140	375	2.7	5.4
ST-PFS-75-M	75	75	516	140	370	2.7	5.4
ST-PFS-100-M	100	75	511	140	365	2.7	5.4

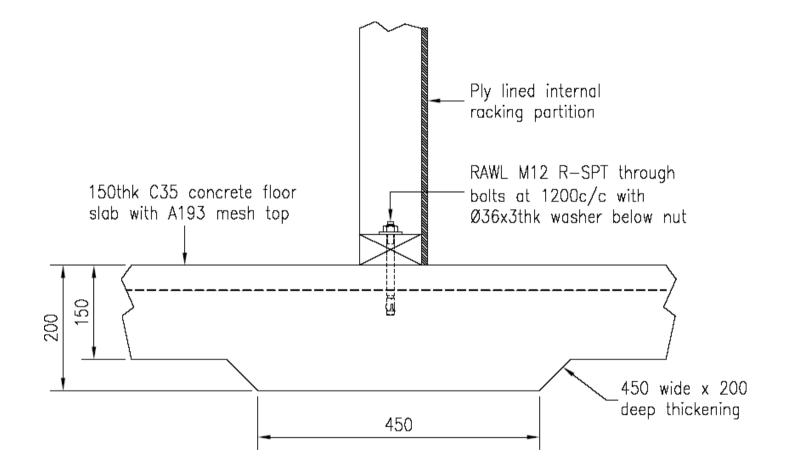
NAIL SPECIFICATION

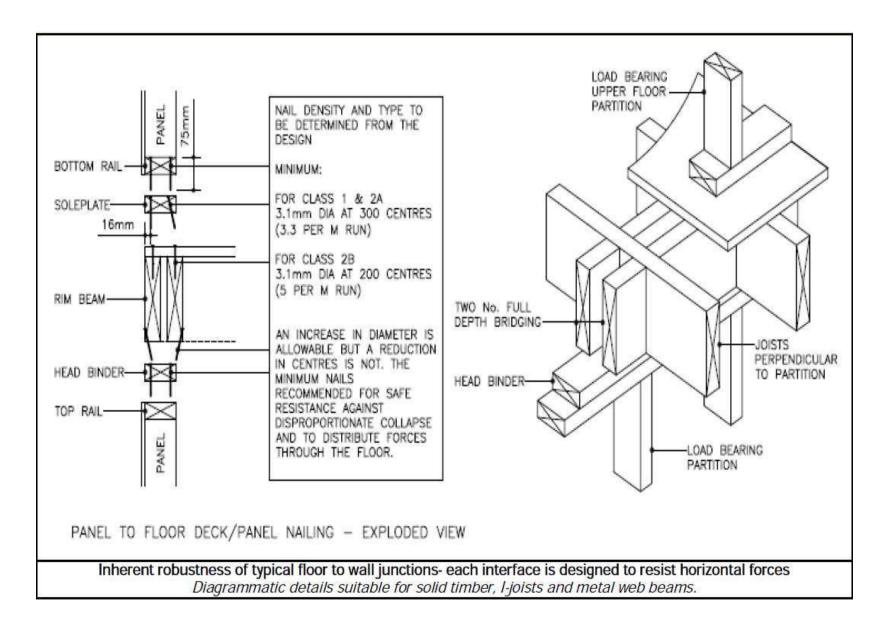
6No. 3.35 x 50mm stainless steel annular ring shank nails (ST-PFS)

4No. 3.35 x 50mm stainless steel annular ring shank nails (ST-PFS-M)

Nails are available from Cullen, to order st/st nails state code ST-PFS-FIXINGPACK or ST-PFS-MINI-FIXINGPACK. 1 pack = 25 straps

Cullen Timber Frame Holding Down Straps





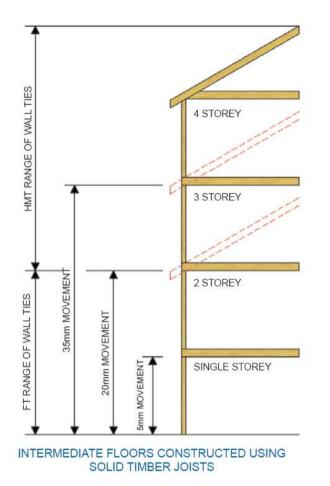
Timber Frame Holding Down Straps

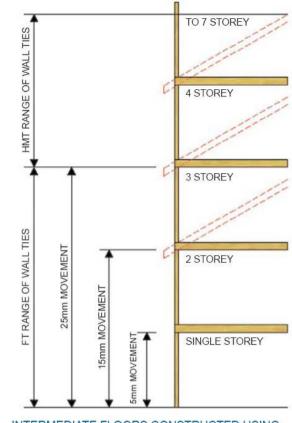
Timber Frame Holding Down to Concrete Floor

Detailing to Ensure Robustness

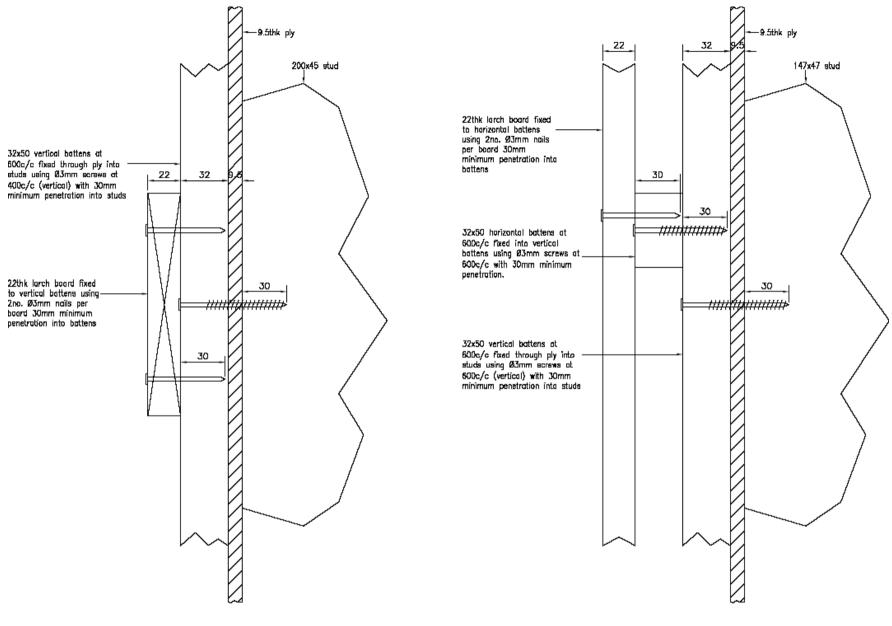
Block Clad Timber Frame Building

Timber Frame Building Clad in Various Materials


Recommended vertical tie spacing for FT range of brick / timber wall-ties subject to various surface wind pressures.

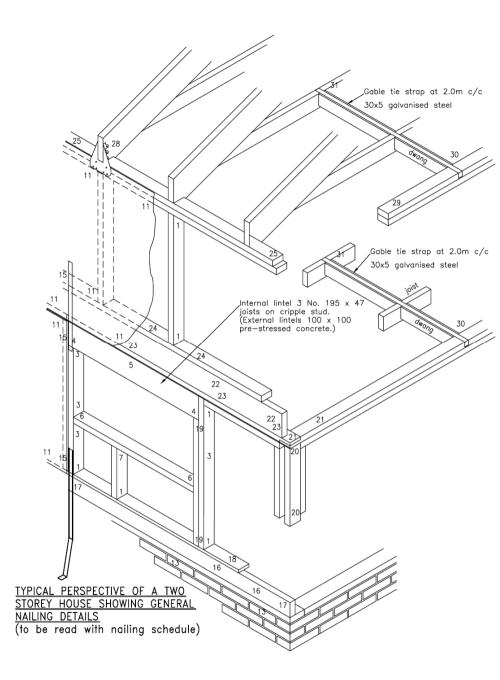

Maximum net surface wind pressure kN/m²	Stud Spacing (mm)						
	600	400	600	400	600	400	
	FT-50	FT-50	FT-75	FT-75	FT-100	FT-100	
0.6	525	600	450	600	450	600	
0.8	375	600	300	525	375	525	
1.0	300	450	225	375	300	450	
1.2	225	375	225	300	225	375	
1.4	225	300	150	300	150	300	
1.6	150	300	150	225	150	225	
1.8	150	225	150	225	150	225	
2.0	150	225	75	150	150	225	
2.2	150	225	75	150	75	150	
2.4	75	150	75	150	75	150	

Cullen Wall Tie Details


INTERMEDIATE FLOORS CONSTRUCTED USING EWP JOISTS

Gap Location	w	Gap sizes Closing Gap (CG) at window sills levels and Opening (OG) at windows head levels			
		Joist material			
		Solid Timber (mm)	Engineered I-Joist (mm)		
Bottom level (single storey)	А	5	5		
Level 1 (2 storey)	В	20	15		
Level 2 (3 storey)	С	35	20		
Level 3 (4 storey)	D	45	35		
level 4 (5 storey)	E		40		
level 5 (6 storey)	F	Specialist calculation to be submitted to NHBC	50		
level 6 (7 storey)	G	Se casmitted to Hillbo	60		
Eaves/verge		Add 5mm to level below			

Differential Movement in Timber Frame



HORIZONTAL CLADDING FIXING DETAILS

VERTICAL CLADDING FIXING DETAILS

Typical Timber Cladding Fixing Details

SHOP NAILING

TIMBER FRAMING - 100mm x 4mm Studs to head and sole plate Noggings to studs Studs to cripple Lintel (bearing on cripple stud) 5. Lintel/lintel

Plate below opening to cripple Stunds below opening to plate above 6. 7 Bearn : Joist/joist 8.

PLYWOOD NAILING - 65mm x 3.35mm

9. Gable panels 11. Front and back wall panels 12. Internal sheathed panels (where applicable)

SITE NAILING

WALL FRAMING

20. Stud/corner post

21. Head binder/panel

FOUNDATION

 Wall plate/brick base
 Wall plate/half lapped joint 15. Anchor strap to stud

18. G.F. storey sole plate/wall plate 19. Stud/stud

21. nedu binder joist/1st floor joists 23. 1st floor header joist/head binder 24. Upper storey sole plate/header joist 25. Roof head binder/ponel 26. Stud/stud - internal sheathed wall

Hilti HLC 10x100/68 100mm x 4mm 100mm x 4mm stainless steel

100mm x 4mm ring shank

100mm x 4mm ring shank

100mm x 4mm ring shank

100mm x 4mm

NAIL SIZE

1800mm c/c

2 No. end nailed each end

2 No. toe nailed each end

4 No. end nailed each end

2 No. end nailed each end

2 No. end nailed

600mm c/c, face nailed, staggered

300mm c/c, face nailed, staggered

300mm c/c, face nailed, staggered

2 No. toe nailed 6 No. face nailed

3.35mm at 150mm c/c perimeter, 300mm c/c internal

3.35mm at 150mm c/c perimeter. 300mm c/c internal

3.35mm at 150mm c/c perimeter, 300mm c/c internal

NUMBER OR SPACING

150mm c/c face nailed 200mm c/c 200mm c/c 300mm c/c face nailed, staggered 2 No. face nailed 450mm c/c toe nailed 450mm c/c face nailed 350mm c/c face nailed 300mm c/c face nailed, staggered

ROOF FRAMING 28. 29. 30. 31.

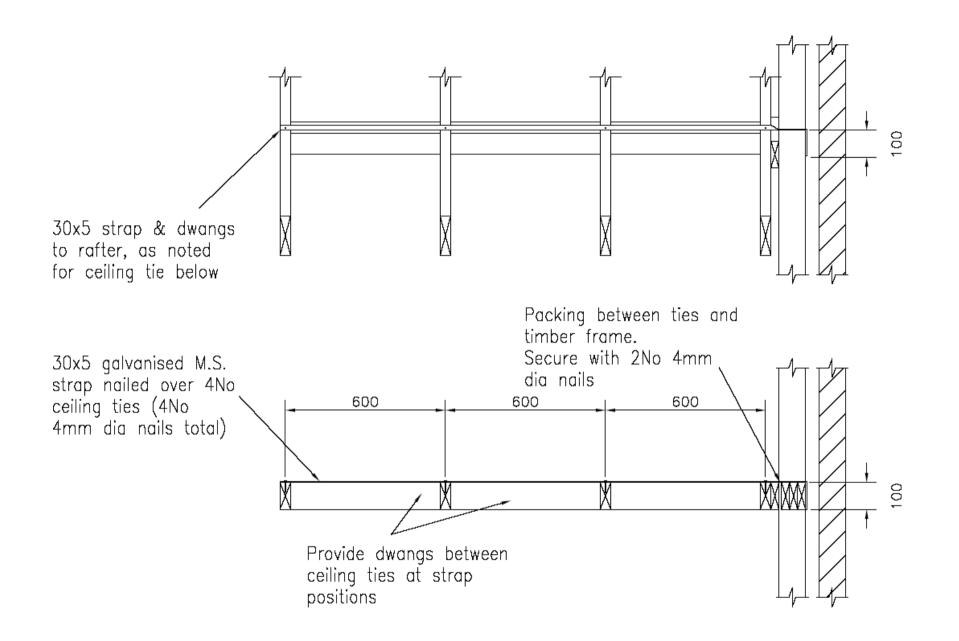
to external

Roof truss/head binder	45mm x 4mm	12 No. by trussclip (6+6)
Gable truss/head binder	100mm x 4mm	450mm c/c toe nailed, staggered
End gable tie/gable truss	100mm x 4mm	3 No. top nailed
End gable tie/ceiling tie	100mm x 4mm	1 No. top nailed per ceiling tie

60mm x 3mm deformed

60mm x 3mm deformed

FIRST FLOOR DIAPHRAGM


32. Chipboard/joist or dwang 33. Chipboard/joist or dwang parallel to front and back walls

75mm c/c 150mmc/c

NOTE : ALL NAILS TO BE SHERARDISED (U.N.O.)

Timber Frame Nailing Specification

Gable Restraint Strap

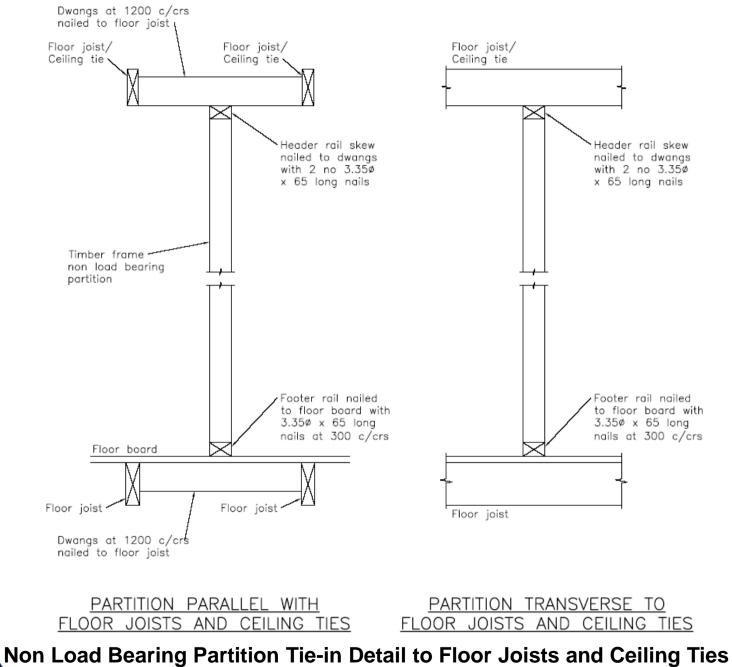
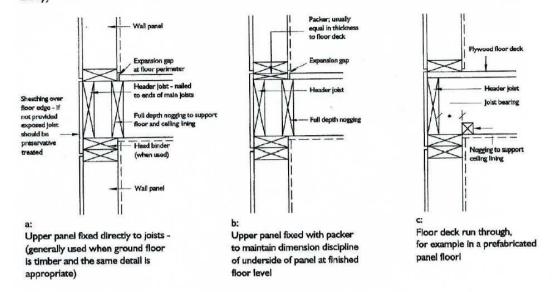
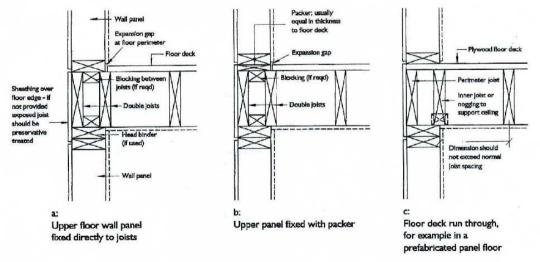
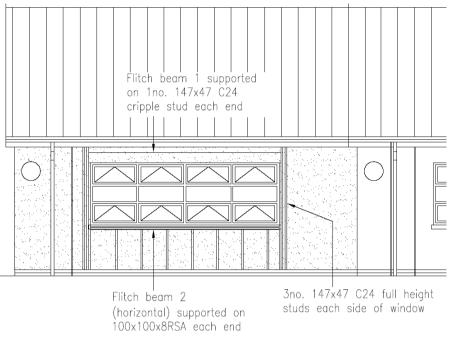
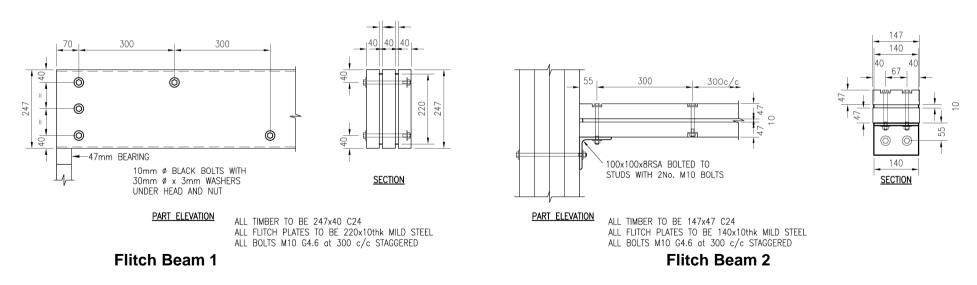
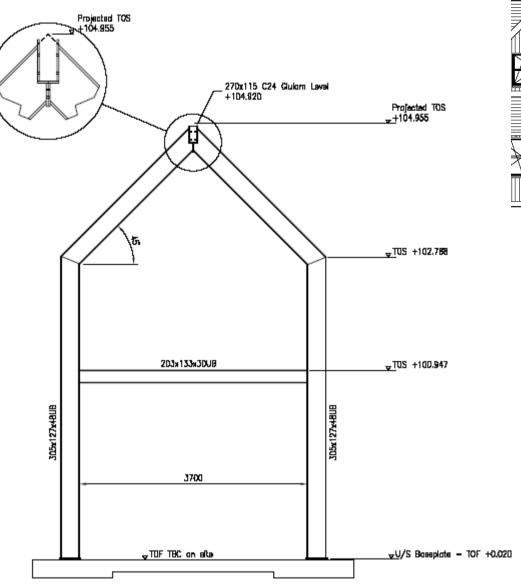


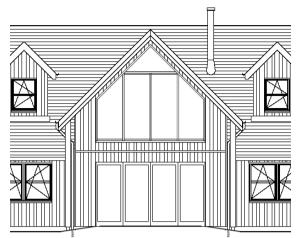
Figure 6.2 Typical floor/ external wall junctions: Joists at right angles to wall (Insulation not shown for clarity)


Figure 6.3 Typical floor/ external wall junctions: Joists parallel with wall (Insulation not shown for clarity)

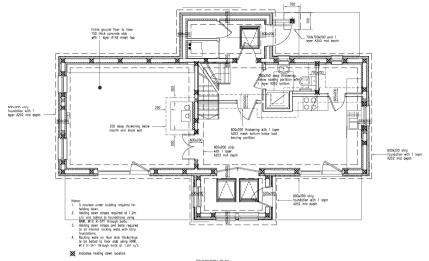
Trada Intermediate Floor Tying Details



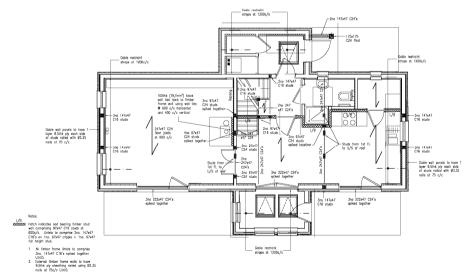

Typical Elevation Showing Timber Frame Around Large Windows

Typical Flitch Beam Detail at Large Window Opening

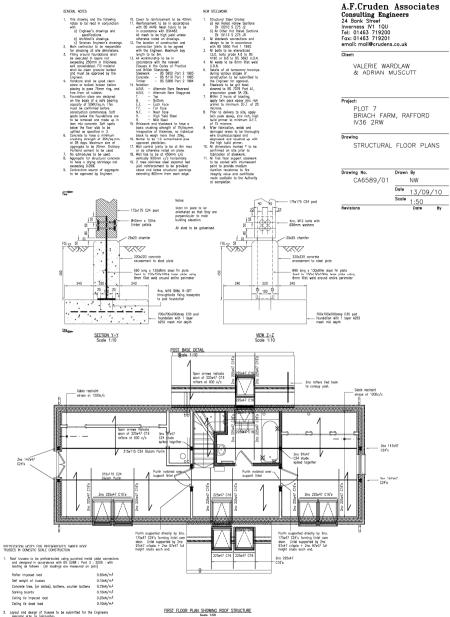
Typical Steel Portal Frame Required for Glazed Gable


A F CRUDEN ASSOCIATES

SER CERTIFICATE CHECKLIST


Job Title:	New Dwelling House			Job No: CA6611		
Description of Project:	New 1 ¹ / ₂ storey block clad timber frame			Risk Classification:		
Building Type:	Block clad timber frame			RC 1		
Approximate Value:	£180,000			Design Check Level:		
Designer:	A.B.			DCL 1		
Checker:	C.D.					
Certifier:	C.D.					
Date Certificate Signed:	18/04/11					
Staged Warrants:	N/A					
Amended Warrants:	N/A					
General Structural Issues, Design Philosophy and Structural Solutions:	Ridge beam supporting loose timber rafters. Timber floor joists supported by externally by timber frame stud wall and internally by LB stud walls. Shallow spread foundations					
Contractor Design Elements:	Timber staircase, handrails, balustrade					
Design Standards Used:	j		B58110 - B55950 -) - Concrete) - Steel		
	BS5628 - Masonry					
Loading Summary:	Ground Floor:	Dead Load Live Load		4.0 kN/m² 1.5 kN/m²		
	Upper Floor(s):	Dead Load: Live Load:		0.75 kN/m² 1.5 kN/m²		
	Roof Load:	Dead Load: Live Load:		1.25 kN/m ² 0.75kN/m ²		
	Wind Loads:	q =		1.10 kN/m ²		
Ground Conditions/ Soils Investigation:	Trial pits - medium dense sands and gravels					
Safe Bearing Value:	150 kN/m ²					
Ground Improvements (if applicable):	N/A					
Disproportionate Collapse Issues:	No special requirements for this class of structure.					
Cladding Design:	Cladding details specified - wall ties generally at 450c/c vert and 225c/c horizontally					
Fixings Generally:	Details specified					
Fire Engineering Issues:	ues: Short duration required - plasterboard adequate - refer t					
	Architects specification					

Typical Check List


FOUNDATION PLAN Scale 1:50

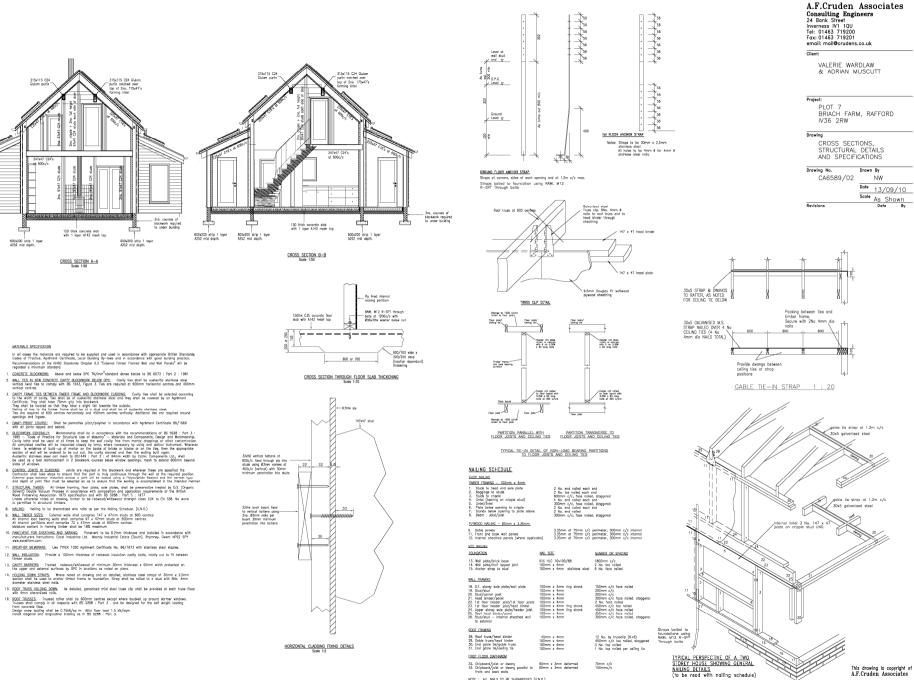
GROUND FLOOR PLAN SHOWING FIRST FLOOR SUPPORT STRUCTURE

INTERNAL DOMESTIC STAIR & LANDING Timber stair & balustrade to contractors design in accordance with BS 585 and following loading...

Plan Imposed load 1.5 kN/m² Hondrall line load 0.36 kN/m et 1.1m height Infill u.d. of 0.50 kN/m² at Infill point load of 0.25 kN

FIRST FLOOR PLAN SHOWING ROOF STRUCTURE

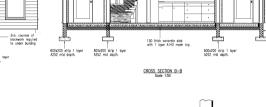
Reof trues supplier shall in addition to the prelabricated trueses also design, detail and supply all longitudinal and diagonal ceiling level bracking timber. The logast of these also shall be submitted for the Engineers approval.


4. All timber to be preservative treated.

- 5. Minimum thickness of timber for trusses to be 47mm.

Truss supplier shall provide an original Design Certificate signed by a Chartered Civil or Structural Engineer in respect of the roof truspes for this project.


This drawing is copyright of A.F.Cruden Associates


By

NOTE : ALL NAILS TO BE SHERARDISED (U.N.O.)

This drawing is copyright of A.F.Cruden Associates

CROSS SECTION A-A

MATERIALS SPECIFICATION

Construction Problems

Spandrel Panel Not Tied Back to Roof Trusses

Outer Wall Not Fixed to 1st Floor Joist

Gable with Large Window

 Design by Consultant was steel purlins supporting roof and spanning on to RHS at window

- This was timber kit as supplied by Timber Kit Manufacturer although their own designer had glulam roof purlins spanning on to glulam posts at windows
- Problem Hinge formed at window head and no structural continuity between gable window and spandrel panel

Structural Engineers Registration Ltd

Gable Wall Adjacent to Staircase

References

- BS6399 Parts 1, 2 & 3
- BS5268 Parts 3 & 6
- BS EN1991-1-1, 1-3 & 1-4
- BS EN1995-1-1
- Dr Robert Hairstans Seminar Presentation 2009
- UK Timber Frame Association Technical Bulletin Number 3 2005
- Cullen Timber Engineering Connectors 2009
- Simpson Strong Tie
- Manual for the Design of Timber Frame Structures to Eurocode 5 by Arnold Page
- •Timber Frame: Standard Details for Houses and Flats, by Trada •Other information from www.trada.co.uk

Acknowledgements

Pleased to acknowledge help and use of information from the following:

- Institution of Structural Engineers
- SER
- Dr. Robert Hairstans, Edinburgh Napier University
- LND Architects
- Trevor Black Architects
- Affordable TM Architects
- Rural Design